148 research outputs found

    Robotic observations of the most eccentric spectroscopic binary in the sky

    Full text link
    The visual A component of the Gliese 586AB system is a double-lined spectroscopic binary consisting of two cool stars with the exceptional orbital eccentricity of 0.976. Such an extremely eccentric system may be important for our understanding of low-mass binary formation. We present a total of 598 high-resolution echelle spectra from our robotic facility STELLA from 2006-2012 which we used to compute orbital elements of unprecedented accuracy. The orbit constrains the eccentricity to 0.97608+/-0.00004 and the orbital period to 889.8195+/-0.0003d. The masses of the two components are 0.87+/-0.05 Msun and 0.58+/-0.03 Msun if the inclination is 5+/-1.5degr as determined from adaptive-optics images, that is good to only 6% due to the error of the inclination although the minimum masses reached a precision of 0.3%. The flux ratio Aa:Ab in the optical is betwee n 30:1 in Johnson-B and 11:1 in I. Radial velocities of the visual B-component (K0-1V) appear constant to within 130 m/s over six years. Sinusoidal modulations of Teff of Aa with an amplitude of apprx 55 K are seen with the orbital period. Component Aa appears warmest at periastron and coolest at apastron, indicating atmospheric changes induced by the high orbital eccentricity. No light variations larger than approximately 4 mmag are detected for A, while a photometric period of 8.5+/-0.2 d with an amplitude of 7 mmag is discovered for the active star B, which we interpret to be its rotation period. We estimate an orbital period of approx 50,000 yr for the AB system. The most likely age of the AB system is >=2 Gyr, while the activity of the B component, if it were a single star, would imply 0.5 Gyr. Both Aa and B are matched with single-star evolutionary tracks of their respective mass

    Long-term photometry of three active red giants in close binary systems: V2253 Oph, IT Com and IS Vir

    Get PDF
    We present and analyze long-term optical photometric measurements of the three active stars V2253 Oph, IT Com and IS Vir. All three systems are single-lined spectroscopic binaries with an early K giant as primary component but in different stages of orbital-rotational synchronization. Our photometry is supplemented by 2MASS and WISE near-IR and mid-IR magnitudes and then used to obtain more accurate effective temperatures and extinctions. For V2253 Oph and IT Com, we found their spectral energy distributions consistent with pure photospheric emission. For IS Vir, we detect a marginal mid-IR excess which hints towards a dust disk. The orbital and rotational planes of IT Com appear to be coplanar, contrary to previous findings in the literature. We apply a multiple frequency analysis technique to determine photometric periods, and possibly changes of periods, ranging from days to decades. New rotational periods of 21.55+-0.03d, 65.1+-0.3d, and 23.50+-0.04d were determined for V2253 Oph, IT Com, and IS Vir, respectively. Splitting of these periods led to tentative detections of differential surface rotations of delta P/P ~0.02 for V2253 Oph and 0.07 for IT Com. Using a time-frequency technique based on short-term Fourier transforms we present evidence of cyclic light variations of length ~10yrs for V2253 Oph and 5-6yrs for IS Vir. A single flip-flop event has been observed for IT Com of duration 2-3yrs. Its exchange of the dominant active longitude had happened close to a time of periastron passage, suggesting some response of the magnetic activity from the orbital dynamics. The 21.55-d rotational modulation of V2253 Oph showed phase coherence also with the orbital period, which is 15 times longer than the rotational period, thus also indicating a tidal feedback with the stellar magnetic activity.Comment: 13 pages, 14 figures, accepted to A

    Lithium enrichment on the single active K1-giant DI Piscium -- Possible joint origin of differential rotation and Li enrichment

    Full text link
    We investigate the surface spot activity of the rapidly rotating, lithium-rich active single K-giant DI Psc to measure the surface differential rotation and understand the mechanisms behind the Li-enrichment. Doppler imaging was applied to recover the surface temperature distribution of DI Psc in two subsequent rotational cycles using the individual mapping lines Ca I 6439, Fe I 6430, Fe I 6421 and Li I 6708. Surface differential rotation was derived by cross-correlation of the subsequent maps. Difference maps are produced to study the uniformity of Li-enrichment on the surface. These maps are compared with the rotational modulation of the Li I 6708 line equivalent width. Doppler images obtained for the Ca and Fe mapping lines agree well and reveal strong polar spottedness, as well as cool features at lower latitudes. Cross-correlating the consecutive maps yields antisolar differential rotation with shear coefficient -0.083 +- 0.021. The difference of the average and the Li maps indicates that the lithium abundance is non-activity related. There is also a significant rotational modulation of the Li equivalent width.Comment: 8 pages, 7 figures, accepted in A&

    Three years of experience with the STELLA robotic observatory

    Get PDF
    Since May 2006, the two STELLA robotic telescopes at the Izaa observatory in Tenerife, Spain, delivered an almost uninterrupted stream of scientific data. To achieve such a high level of autonomous operation, the replacement of all troubleshooting skills of a regular observer in software was required. Care must be taken on error handling issues and on robustness of the algorithms used. In the current paper, we summarize the approaches we followed in the STELLA observatory. Copyright © 2010 Thomas Granzer et al

    Magnitude-range brightness variations of overactive K giants

    Full text link
    We study three representative, overactive spotted K giants (IL Hya, XX Tri, and DM UMa) known to exhibit V-band light variations between 0.65-1.05 mags. Our aim is to find the origin of their large brightness variation. We employ long-term phase-resolved multicolor photometry, mostly from automatic telescopes, covering 42 yr for IL Hya, 28 yr for XX Tri, and 34 yr for DM UMa. For one target, IL Hya, we present a new Doppler image from NSO data taken in late 1996. Effective temperatures for our targets are determined from all well-sampled observing epochs and are based on a V-I_C color-index calibration. The effective temperature change between the extrema of the rotational modulation for IL Hya and XX Tri is in the range 50-200 K. The bolometric flux during maximum of the rotational modulation, i.e., the least spotted states, varied by up to 39% in IL Hya and up to 54% in XX Tri over the course of our observations. We emphasize that for IL Hya this is just about half of the total luminosity variation that can be explained by the photospheric temperature (spots/faculae) changes, while for XX Tri it is even about one third. The long-term, 0.6 mag V-band variation of DM UMa is more difficult to explain because little or no B-V color index change is observed on the same timescale. Placing the three stars with their light and color variations into H-R diagrams, we find that their overall luminosities are generally too low compared to predictions from current evolutionary tracks. A change in the stellar radius due to strong and variable magnetic fields during activity cycles likely plays a role in explaining the anomalous brightness and luminosity of our three targets. At least for IL Hya, a radius change of about 9% is suggested from m_bol and T_eff, and is supported by independent vsin(i) measurements.Comment: 13 pages, 8 figures, accepted in A&

    Low albedos of hot to ultra-hot Jupiters in the optical to near-infrared transition regime

    Full text link
    The depth of a secondary eclipse contains information of both the thermally emitted light component of a hot Jupiter and the reflected light component. If the dayside atmosphere of the planet is assumed to be isothermal, it is possible to disentangle both. In this work, we analyze 11 eclipse light curves of the hot Jupiter HAT-P-32b obtained at 0.89 μ\mum in the z' band. We obtain a null detection for the eclipse depth with state-of-the-art precision, -0.01 +- 0.10 ppt. We confirm previous studies showing that a non-inverted atmosphere model is in disagreement to the measured emission spectrum of HAT-P-32b. We derive an upper limit on the reflected light component, and thus, on the planetary geometric albedo AgA_g. The 97.5%-confidence upper limit is AgA_g < 0.2. This is the first albedo constraint for HAT-P-32b, and the first z' band albedo value for any exoplanet. It disfavors the influence of large-sized silicate condensates on the planetary day side. We inferred z' band geometric albedo limits from published eclipse measurements also for the ultra-hot Jupiters WASP-12b, WASP-19b, WASP-103b, and WASP-121b, applying the same method. These values consistently point to a low reflectivity in the optical to near-infrared transition regime for hot to ultra-hot Jupiters.Comment: accepted for publication in A&

    XMM-Newton observations of the low-luminosity cataclysmic variable V405 Pegasi

    Full text link
    V405 Peg is a low-luminosity cataclysmic variable (CV) that was identified as the optical counterpart of the bright, high-latitude ROSAT all-sky survey source RBS1955. The system was suspected to belong to a largely undiscovered population of hibernating CVs. Despite intensive optical follow-up its subclass however remained undetermined. We want to further classify V405 Peg and understand its role in the CV zoo via its long-term behaviour, spectral properties, energy distribution and accretion luminosity. We perform a spectral and timing analysis of \textit{XMM-Newton} X-ray and ultra-violet data. Archival WISE, HST, and Swift observations are used to determine the spectral energy distribution and characterize the long-term variability. The X-ray spectrum is characterized by emission from a multi-temperature plasma. No evidence for a luminous soft X-ray component was found. Orbital phase-dependent X-ray photometric variability by ∼50%\sim50\% occurred without significant spectral changes. No further periodicity was significant in our X-ray data. The average X-ray luminosity during the XMM-Newton observations was L_X, bol simeq 5e30 erg/s but, based on the Swift observations, the corresponding luminosity varied between 5e29 erg/s and 2e31 erg/son timescales of years. The CV subclass of this object remains elusive. The spectral and timing properties show commonalities with both classes of magnetic and non-magnetic CVs. The accretion luminosity is far below than that expected for a standard accreting CV at the given orbital period. Objects like V405 Peg might represent the tip of an iceberg and thus may be important contributors to the Galactic Ridge X-ray Emission. If so they will be uncovered by future X-ray surveys, e.g. with eROSITA.Comment: A&A, in pres

    Time-series Doppler images and surface differential rotation of the effectively-single rapidly-rotating K-giant KU Pegasi

    Full text link
    According to most stellar dynamo theories, differential rotation (DR) plays a crucial role for the generation of toroidal magnetic fields. Numerical models predict surface differential rotation to be anti-solar for rapidly-rotating giant stars, i.e., their surface angular velocity could increase with stellar latitude. However, surface differential rotation has been derived only for a handful of individual giant stars to date. The spotted surface of the K-giant KU Pegasi is investigated in order to detect its time evolution and quantify surface differential rotation. We present altogether 11 Doppler images from spectroscopic data collected with the robotic telescope STELLA between 2006--2011. All maps are obtained with the surface reconstruction code iMap. Differential rotation is extracted from these images by detecting systematic (latitude-dependent) spot displacements. We apply a cross-correlation technique to find the best differential rotation law. The surface of KU Peg shows cool spots at all latitudes and one persistent warm spot at high latitude. A small cool polar spot exists for most but not all of the epochs. Re-identification of spots in at least two consecutive maps is mostly possible only at mid and high latitudes and thus restricts the differential-rotation determination mainly to these latitudes. Our cross-correlation analysis reveals solar-like differential rotation with a surface shear of α=+0.040±0.006\alpha=+0.040\pm0.006, i.e., approximately five times weaker than on the Sun. We also derive a more accurate and consistent set of stellar parameters for KU Peg including a small Li abundance of ten times less than solar.Comment: 13 pages, 12 figures, accepted for publication in A&

    Providing Remote Access to Robotic Telescopes by Adopting Grid Technology

    No full text
    We present an architecture for enabling remote access to robotic telescopes through the adoption of Grid technology. With this architecture, Internet connected robotic telescopes form a global network and are controlled by a global resource management system (scheduler), similar to individual compute resources in a Grid. By virtualizing the access to these telescope resources and by describing them and observation requests in a generic language (RTML). Astronomers are provided with an interface to a telescope network, from which they can get the appropriate resources for their observations. Moreover, new kinds of coordinated observations become feasible, such as multi-wavelength campaigns or immediate and continuous monitoring of transient astronomical events. This paper describes the architecture, the processing of observation requests and new research topics in a global network of robotic telescopes
    • …
    corecore